
ni.com

Everything You Ever Wanted To
Know About Functional Global

Variables
 (Use DVRs Instead)

Nancy Hollenback, CLA
NI Field Architect – Americas Central West

LabVIEWjournal.com

ni.com

Nancy.Hollenback@ni.com

3 ni.com

Agenda

• What is a functional global variable (FGV)?
• Does the FGV prevent race conditions?
•  Is the FGV better than the global variable?
• Which use cases are a good fit for FGVs
•  Is there a better way? (DVRs)
• Cool stuff with DVRs and Classes

4 ni.com

Why Do We Need Functional Global Variables?

User
interface

Control
Model

Data
Logger

IO
Engine

• A large application usually has many processes
executing concurrently
• Processes need to share data or send and
receive messages.

Alarm
Engine

5 ni.com

Inter Process Communication

• Store Data
• Stream Data

• Send
Message

Typically
straightforward use
cases with limited
implementation
options

Many more variations,
permutations, and
design considerations

6 ni.com

Store Data

•  Data is stored and made “globally” accessible
•  Storage mechanism holds only the current value
•  Other code modules access the data as needed
•  The potential for race conditions must be considered

UI Process
1

Headless
Process 1

Headless
Process N

Use Cases
Configuration data
Slowly changing
data
Non-critical
messages

“Global Data”

7 ni.com

Functional Global Variables – Benefits

•  Provide global access to data while also
providing a framework to avoid potential race
conditions.

•  Encapsulate data so that debugging and
maintenance is easier

•  Facilitate the creation of reusable modules
which simplifies writing and maintenance of
code

•  Program becomes more readable.

8 ni.com

Functional Global Variable - Review

•  The general form of a functional global variable
includes an uninitialized shift register (1) with a single
iteration For or While Loop

8

9 ni.com

Functional Global Variables

•  A functional global variable usually has an action input
parameter that specifies which task the VI performs

•  The VI uses an uninitialized shift register in a While Loop to
hold the result of the operation

9

10 ni.com

Best Practices for Documentation

•  The action/method control should be a type defined enum.
•  Make “get” the default action/method.
•  Consider making the action/method required.
•  Include this in the label.
•  Wire to the top connector

11 ni.com

Functional Global Variables – History

•  (LV2 Style Global, Action Engine, VIGlobals, USRs,
Components)

•  Global data storage mechanism prior to the introduction of the
global variable in LabVIEW 3

•  Foundational programming technique that has been in extensive
use in the LabVIEW community

Note: The behavior of an uninitialized shift register was not defined in LabVIEW 1.0

12 ni.com

Replacing Global Variables with FGVs

•  This is a common initial use case.

13 ni.com

DEMO
Main – Using a Global

14 ni.com

DEMO
Main – Using a Simple Set-Get FGV

15 ni.com

Do FGVs Eliminate Race Conditions?

•  What if the FGV includes only set and get methods?

What happens when 2 VIs call the get and both
modify the data before either has called the set?

Modify
Data

Modify
Data

VI-1.vi

VI-2.vi

16 ni.com

DEMO
Race Condition with a Set-Get Functional Global Variable

17 ni.com

Use FGVs to Protect Critical Sections of Code

•  Identify a critical section of code, such as the modification
of a counter value or a timer value.

•  Identify the actions that modify the data (increment,
decrement)

•  Encapsulate the entire get/modify/set steps in the FGV

This is commonly called an Action Engine.
It is a special type of FGV.

18 ni.com

FGV – Action Engine Protects Critical Sections of
Code

• This action engine wraps the “get/modify/set”
around the critical section of code.

FGV Counter.vi

Get Set Modify

19 ni.com

Sidebar: Execution Properties – Non Reentrant
Execution

•  VIs are non reentrant by default
•  The LabVIEW execution system will not run multiple calls to the

same SubVI simultaneously

20 ni.com

Sidebar: Reentrant vs. Non-Reentrant

•  Non reentrancy is required for FGVs*
•  Reentrancy allows one subVI to be called simultaneously
from different places.

•  To allow a subVI to be called in parallel
•  To allow a subVI instance to maintain its own state

Data
Space

Data
Space

Data
Space

State (or the data
that resides in the
uninitialized shift
register) is
maintained between
all instances of the
FGV

*There is an exception (ask Nate)

21 ni.com

Non Reentrant VIs Block Other Calls

•  These two VIs are non reentrant by default
•  They cannot run simultaneously
•  One will run until completion and block the other from
running until completed.

22 ni.com

Shared Clones vs. Preallocate clones

•  20 unique Instances of a reentrant VI
•  During execution, max of 3 instances called simultaneously
•  Preallocate – 20 Clones
•  Shared Clones – 3 Clones

Time

23 ni.com

Action Engines Protect Critical Sections!

The FGV will block other instance from running until it
has completed execution. Therefore, encapsulating
the entire action prevents the potential race condition.

Modify
Data

Modify
Data

VI-1.vi

VI-2.vi

VI-1.vi

VI-2.vi

24 ni.com

DEMO
Action Engine FGV

Avoid Race Conditions!!! Fully encapsulate the
get/modify/set.

25 ni.com

Globals vs FGVs

•  Globals are significantly faster.
•  FGVs allow for extra code to check for valid data.
•  What if we used a project library to encapsulate a global?

•  Make the global private
•  Write VIs to access the data

26 ni.com

Encapsulated Global

•  Create a global variable
•  Add it to a project library and set access scope to private

Private VIs
cannot be
used outside
the .lvlib

27 ni.com

Encapsulated Global

•  Create the VI in the lvlib, that will act on the privately
scoped global variable.

28 ni.com

DEMO
Encapsulated Global

Consider locking and password protecting the .lvlib

29 ni.com

Reusable components with FGVs

•  Recall that FGVs encapsulate the data and functionality
and as such are a good design pattern for building
reusable components

•  Consider using a FGV as a look-up table.

Name Password
John 66ford90
Mary spring2012

Array of names has corresponding
array of values or datasets

30 ni.com

Name Value Look Up Table

•  Define the data type of the value that is associated with
the name.

•  Modify the method to include all actions to perform related
to adding, getting, and deleting items from the list.

•  Add code to ensure whether data is valid

31 ni.com

FGV – Resource Storage

Design pattern for a key-
value look up table.

•  Array of names
has a one-to-one
correspondence to the
array of data sets

•  Does not protect
against race conditions

•  Allows for the
qualification of valid
data

32 ni.com

DEMO
FGV Password Storage

33 ni.com

Resource Storage FGVs

•  Build drop-in reusable components.
•  Provide protection and validation of data.
•  Susceptible to race conditions.
•  Can be used to store:

•  References (User Events, DVRs, etc)
•  Information about devices
•  Paths for data storage
•  Operator information
•  Anything that requires a name-value lookup

34 ni.com

DEMO
Creating Your Own Resource FGV

35 ni.com

Variant Attributes

•  Very flexible mechanism for storing data
•  Hash table in which the value can be any data type.

36 ni.com

DEMO
FGV with Variant Attribute

37 ni.com

What if You Need Multiple Counters…
•  Reentrant functional global?
•  Array manipulation of the functional global data?
•  Perhaps there is a better way…

?

38 ni.com

Review of Queues and References

•  Reference is a pointer
 to the data
•  The wire contains the
reference, not the data.

•  Forking the wire creates a
copy of the reference, not
a copy of the data

•  Access data through
methods (VIs)

•  Developer controls the
creation and destruction of
the data

39 ni.com

What is the Data Value Reference (DVR)?

•  This is a simple way to wrap a reference around any
type of data.

Create & Destroy Modify

40 ni.com

Data Value Reference (DVR) Library

•  Create a constructor and destructor.
•  Create a template for the methods.
•  Create a method for each case that will modify the data.

41 ni.com

Creating a DVR from an FGV

•  If you already have an FGV, you can easily transform it
into the more flexible DVR library.

•  Create the constructor and destructor.
•  Create a method (VI) for each case that was in the FGV.

42 ni.com

Data Value Reference (DVR) - Library

•  Reference acts as a
pointer to the data

•  Create unlimited
instances

•  Easily expand the
library

43 ni.com

DEMO
Using a DVR Library

44 ni.com

DVR Library Design Issues

•  Easily add new methods (VIs) to the library as needed.
•  Create a library the has a similar look and feel to native
APIs (Queues, Notifiers, Semaphores)

•  Identify the owner of the library who will update and
maintain the library.

•  Anyone with Core 1 & Core 2 understanding can use the
DVR library.

45 ni.com

DEMO
Add a Method to the DVR Library

46 ni.com

DEMO
Cool Stuff with DVRs and Classes

47 ni.com

Summary Slide

•  Use Action Engines
•  Use FGVs for Resource Storage
•  Learn about DVRs
•  Learn about other techniques for messaging.

48 ni.com

What Else Do I need to Know?

• Store Data
• Stream Data

• Send
Message

Typically
straightforward use
cases with limited
implementation
options

Many more variations,
permutations, and
design considerations

49 ni.com

Various Inter-process Communication Methods
Same target
Same application instance

Same target, different application
instances OR
Different targets on network

Storing -
Current
Value

•  Single-process shared
variables

•  Local and global variables
•  FGV, SEQ, DVR
•  CVT
•  Notifiers (Get Notifier)

•  Network-published shared variables
(single-element)

•  CCC

Sending
Message

•  Queues (N:1)
•  User events (N:N)
•  Notifiers (1:N)
•  User Events

•  TCP, UDP
•  Network Streams (1:1)
•  AMC (N:1)
•  STM (1:1)

Streaming •  Queues •  Network Streams
•  TCP

50 ni.com

Foundational APIs for Storing & Messaging

•  1:1, 1:N
•  Full API
•  Lossy
•  Named

•  Pointer to Data
•  1:1,1:N,N:1,N;N
•  Full API (DVR)

•  1:1,N:
1,1:N,N:N

•  Secure
•  Flexible

•  Lossless
(option)

•  Buffered
•  Full API
•  1:1, N:1
•  Named Queues User

Events

Notifiers
DVRs
FGVs

ni.com

Thank You!

